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Advance Organizer mit generativer KI entwickeln 

Wenn es schwierig ist, für ein abstraktes Thema einen passenden Advance Organizer zu finden, 
kann ein generativer KI-Werkzeug gezielt unterstützen. Dazu gibt man das zentrale Konzept oder 
den Fachbegriff ein (z. B. Nebenläufigkeit, Polymorphismus, Normalform Datenbank) und bittet 
um mehrere kurze Erklärungen auf unterschiedlichen Abstraktionsstufen (z. B. alltagsnah, 
bildhaft, fachlich reduziert. Aus diesen Vorschlägen wählt die Lehrperson eine geeignete 
Analogie oder Formulierung aus, passt sie an die Lernenden an und nutzt sie als Einstieg, um 
neues Wissen mit bereits Bekanntem zu verknüpfen. 
 
Die folgenden Beispiele wurden im Januar 2026 mit Google Gemini erstellt und werden in 
Originalform wiedergegeben. 
 
Beispiel «Nebenläufigkeit»  

1. Die Alltags-Ebene (Abstrakt) 

Nebenläufigkeit ist wie ein Koch, der gleichzeitig Nudeln kocht und Sauce rührt, indem er 
ständig zwischen den Aufgaben hin- und herwechselt. Auch wenn er nur zwei Hände hat, 
werden beide Gerichte fast zeitgleich fertig, weil er Wartezeiten effizient nutzt. In der Informatik 
bedeutet das, dass ein System mehrere Aufgaben beginnt und bearbeitet, ohne dass eine erst 
komplett abgeschlossen sein muss. Es geht primär um die Organisation von Aufgaben, nicht 
zwingend um deren zeitgleiche Ausführung. 

2. Die Programmier-Ebene (Anwendung) 

Für Entwickler bedeutet Nebenläufigkeit, ein Programm in logisch unabhängige Einheiten wie 
Threads oder Coroutines zu unterteilen. Diese Einheiten können verschachtelt ausgeführt 
werden, was die Reaktionsfähigkeit erhöht, etwa damit eine Benutzeroberfläche nicht einfriert, 
während im Hintergrund Daten geladen werden. Ein Scheduler steuert dabei, welcher Code-
Abschnitt wann Rechenzeit erhält. Der Fokus liegt hier auf der sauberen Trennung von Abläufen, 
die theoretisch auch gleichzeitig ablaufen könnten. 

3. Die System-Ebene (Hardware & OS) 

Auf der Ebene des Betriebssystems beschreibt Nebenläufigkeit die Verwaltung mehrerer 
Prozesse, die sich begrenzte Ressourcen wie die CPU teilen. Durch extrem schnelles Hin- und 
Herwechseln (Context Switching) erzeugt das System die Illusion von Gleichzeitigkeit, selbst 
wenn nur ein einzelner Prozessorkern vorhanden ist. Dabei müssen 
Synchronisationsmechanismen wie Locks oder Mutexe verhindern, dass Prozesse gleichzeitig 
auf denselben Speicher zugreifen und Daten korrumpieren. Hier wird die physikalische 
Rechenzeit in winzige Zeitscheiben zerlegt. 

4. Die Theoretische Ebene (Formal) 

In der theoretischen Informatik wird Nebenläufigkeit als die Eigenschaft eines Systems definiert, 
bei der die zeitliche Reihenfolge von Ereignissen nur partiell geordnet ist. Mathematische 
Modelle wie Petri-Netze oder Prozesskalküle untersuchen dabei das Verhalten von Systemen, 



deren Zustandsübergänge nicht-deterministisch verschachtelt sein können. Es geht darum, zu 
beweisen, dass ein System trotz beliebiger Abfolgen von Rechenschritten (Interleaving) stets 
korrekte Ergebnisse liefert und keine Deadlocks erzeugt. Der Fokus liegt auf der Verifikation der 
logischen Korrektheit komplexer Interaktionen. 

 

Beispiel «Polymorphismus»  

1. Die Alltags-Ebene (Abstrakt) 

Polymorphismus bedeutet, dass ein und derselbe Befehl je nach Empfänger unterschiedliche 
Reaktionen auslöst. Denken Sie an das Kommando „Sprechen!“: Ein Mensch antwortet mit 
Worten, ein Hund bellt und ein Papagei krächzt. In der Informatik ermöglicht dies, dass man 
verschiedene Dinge auf die gleiche Art ansprechen kann, ohne die genauen Details jedes 
Einzelnen zu kennen. Es geht um eine einheitliche Schnittstelle für unterschiedliche 
Verhaltensweisen. 

2. Die Programmier-Ebene (Anwendung) 

In der objektorientierten Programmierung erlaubt Polymorphismus, dass eine Unterklasse die 
Methoden ihrer Basisklasse überschreibt. Ein Programm kann zum Beispiel eine Liste von 
„Formen“ verwalten und für jede einfach zeichne() aufrufen – egal ob es sich um einen Kreis oder 
ein Quadrat handelt. Der Code muss nicht wissen, welche Form er vor sich hat, da jedes Objekt 
selbst weiß, wie es sich zeichnen muss. Das macht Software flexibel und leicht erweiterbar für 
neue Objekttypen. 

3. Die System-Ebene (Implementierung) 

Technisch wird Polymorphismus oft durch „dynamische Bindung“ (Late Binding) zur Laufzeit 
realisiert. Der Compiler erstellt dabei häufig eine Sprungtabelle (V-Table), in der die 
Speicheradressen der tatsächlichen Methoden für den jeweiligen Datentyp hinterlegt sind. Erst 
wenn das Programm läuft, wird anhand dieser Tabelle entschieden, welcher Codeblock genau 
ausgeführt werden muss. Dies ermöglicht die Abstraktion von konkreten Datentypen auf der 
Ebene der Speicherverwaltung. 

4. Die Theoretische Ebene (Typ-Theorie) 

In der theoretischen Informatik beschreibt Polymorphismus die Fähigkeit eines Typsystems, 
einen Wert oder eine Funktion unter mehreren Typen zu führen. Man unterscheidet dabei vor 
allem zwischen Ad-hoc-Polymorphismus (Überladen von Funktionen), Subtyp-Polymorphismus 
(Vererbung) und parametrischer Polymorphie (Generics). Ziel ist es, abstrakte Algorithmen zu 
definieren, die über eine Menge von Typen operieren können, während die Typsicherheit 
mathematisch beweisbar bleibt. 

 

Beispiel «Normalform bei Datenbanken» 

1. Die Alltags-Ebene (Abstrakt) 

Normalformen sind wie ein striktes Ordnungssystem für einen Aktenschrank, das verhindert, dass 
dieselbe Information an fünf verschiedenen Stellen abgelegt wird. Jedes Detail bekommt genau 
einen festen Platz, damit man beim Ändern einer Adresse nicht in zehn verschiedenen Mappen 
radieren muss. Durch diese Regeln werden doppelte Einträge vermieden, was das Suchen und 



Aktualisieren massiv vereinfacht. Das Ziel ist ein „sauberes“ System, in dem keine 
widersprüchlichen Informationen entstehen können. 

2. Die Programmier-Ebene (Anwendung) 

Für Entwickler ist die Normalisierung der Prozess, eine große, unübersichtliche Tabelle in mehrere 
kleinere, logisch verknüpfte Tabellen aufzuteilen. Man trennt beispielsweise Kundendaten von 
Bestelldaten, um sicherzustellen, dass jede Information nur einmal existiert und über eindeutige 
Schlüssel (IDs) referenziert wird. Dies verhindert Anomalien, sodass beim Löschen einer 
Bestellung nicht versehentlich der ganze Kunde aus dem System verschwindet. Die ersten drei 
Normalformen (1NF, 2NF, 3NF) gelten dabei als Goldstandard für ein robustes Datenbankdesign. 

3. Die System-Ebene (Implementierung) 

Auf technischer Ebene sichern Normalformen die Datenintegrität und minimieren den 
Speicherbedarf durch die Vermeidung von Redundanz. Da jede Information nur einmal physisch 
vorhanden ist, muss das System bei Schreibvorgängen weniger Daten synchronisieren, was die 
Gefahr von Inkonsistenzen verringert. Allerdings erfordert ein hochgradig normalisiertes System 
mehr „Joins“ (Zusammenführungen) beim Lesen der Daten, was die Abfragegeschwindigkeit 
beeinflussen kann. Es geht hier also um die Balance zwischen Datensicherheit und Performance. 

4. Die Theoretische Ebene (Formal) 

In der relationalen Entwurfstheorie definieren Normalformen Kriterien für die Zerlegung von 
Relationen basierend auf funktionalen Abhängigkeiten. Ein Schema erreicht eine höhere 
Normalform, wenn jedes Nicht-Schlüssel-Attribut ausschließlich von einem Primärschlüssel 
abhängt (getreu dem Motto: „The key, the whole key, and nothing but the key“). Mathematisch wird 
so sichergestellt, dass die Dekomposition verlustfrei ist und keine transitiven Abhängigkeiten die 
logische Struktur schwächen. Es ist ein formaler Beweis für die Korrektheit und Redundanzfreiheit 
eines Datenmodells. 

 


