
Hartmann W., Jäckel S., Näf M., Reichert R.: Informatikunterricht planen und durchführen.
2026, Springer Vieweg Berlin, Heidelberg

Advance Organizer mit generativer KI entwickeln

Wenn es schwierig ist, für ein abstraktes Thema einen passenden Advance Organizer zu finden,
kann ein generativer KI-Werkzeug gezielt unterstützen. Dazu gibt man das zentrale Konzept oder
den Fachbegriff ein (z. B. Nebenläufigkeit, Polymorphismus, Normalform Datenbank) und bittet
um mehrere kurze Erklärungen auf unterschiedlichen Abstraktionsstufen (z. B. alltagsnah,
bildhaft, fachlich reduziert. Aus diesen Vorschlägen wählt die Lehrperson eine geeignete
Analogie oder Formulierung aus, passt sie an die Lernenden an und nutzt sie als Einstieg, um
neues Wissen mit bereits Bekanntem zu verknüpfen.

Die folgenden Beispiele wurden im Januar 2026 mit Google Gemini erstellt und werden in
Originalform wiedergegeben.

Beispiel «Nebenläufigkeit»

1. Die Alltags-Ebene (Abstrakt)

Nebenläufigkeit ist wie ein Koch, der gleichzeitig Nudeln kocht und Sauce rührt, indem er
ständig zwischen den Aufgaben hin- und herwechselt. Auch wenn er nur zwei Hände hat,
werden beide Gerichte fast zeitgleich fertig, weil er Wartezeiten effizient nutzt. In der Informatik
bedeutet das, dass ein System mehrere Aufgaben beginnt und bearbeitet, ohne dass eine erst
komplett abgeschlossen sein muss. Es geht primär um die Organisation von Aufgaben, nicht
zwingend um deren zeitgleiche Ausführung.

2. Die Programmier-Ebene (Anwendung)

Für Entwickler bedeutet Nebenläufigkeit, ein Programm in logisch unabhängige Einheiten wie
Threads oder Coroutines zu unterteilen. Diese Einheiten können verschachtelt ausgeführt
werden, was die Reaktionsfähigkeit erhöht, etwa damit eine Benutzeroberfläche nicht einfriert,
während im Hintergrund Daten geladen werden. Ein Scheduler steuert dabei, welcher Code-
Abschnitt wann Rechenzeit erhält. Der Fokus liegt hier auf der sauberen Trennung von Abläufen,
die theoretisch auch gleichzeitig ablaufen könnten.

3. Die System-Ebene (Hardware & OS)

Auf der Ebene des Betriebssystems beschreibt Nebenläufigkeit die Verwaltung mehrerer
Prozesse, die sich begrenzte Ressourcen wie die CPU teilen. Durch extrem schnelles Hin- und
Herwechseln (Context Switching) erzeugt das System die Illusion von Gleichzeitigkeit, selbst
wenn nur ein einzelner Prozessorkern vorhanden ist. Dabei müssen
Synchronisationsmechanismen wie Locks oder Mutexe verhindern, dass Prozesse gleichzeitig
auf denselben Speicher zugreifen und Daten korrumpieren. Hier wird die physikalische
Rechenzeit in winzige Zeitscheiben zerlegt.

4. Die Theoretische Ebene (Formal)

In der theoretischen Informatik wird Nebenläufigkeit als die Eigenschaft eines Systems definiert,
bei der die zeitliche Reihenfolge von Ereignissen nur partiell geordnet ist. Mathematische
Modelle wie Petri-Netze oder Prozesskalküle untersuchen dabei das Verhalten von Systemen,

deren Zustandsübergänge nicht-deterministisch verschachtelt sein können. Es geht darum, zu
beweisen, dass ein System trotz beliebiger Abfolgen von Rechenschritten (Interleaving) stets
korrekte Ergebnisse liefert und keine Deadlocks erzeugt. Der Fokus liegt auf der Verifikation der
logischen Korrektheit komplexer Interaktionen.

Beispiel «Polymorphismus»

1. Die Alltags-Ebene (Abstrakt)

Polymorphismus bedeutet, dass ein und derselbe Befehl je nach Empfänger unterschiedliche
Reaktionen auslöst. Denken Sie an das Kommando „Sprechen!“: Ein Mensch antwortet mit
Worten, ein Hund bellt und ein Papagei krächzt. In der Informatik ermöglicht dies, dass man
verschiedene Dinge auf die gleiche Art ansprechen kann, ohne die genauen Details jedes
Einzelnen zu kennen. Es geht um eine einheitliche Schnittstelle für unterschiedliche
Verhaltensweisen.

2. Die Programmier-Ebene (Anwendung)

In der objektorientierten Programmierung erlaubt Polymorphismus, dass eine Unterklasse die
Methoden ihrer Basisklasse überschreibt. Ein Programm kann zum Beispiel eine Liste von
„Formen“ verwalten und für jede einfach zeichne() aufrufen – egal ob es sich um einen Kreis oder
ein Quadrat handelt. Der Code muss nicht wissen, welche Form er vor sich hat, da jedes Objekt
selbst weiß, wie es sich zeichnen muss. Das macht Software flexibel und leicht erweiterbar für
neue Objekttypen.

3. Die System-Ebene (Implementierung)

Technisch wird Polymorphismus oft durch „dynamische Bindung“ (Late Binding) zur Laufzeit
realisiert. Der Compiler erstellt dabei häufig eine Sprungtabelle (V-Table), in der die
Speicheradressen der tatsächlichen Methoden für den jeweiligen Datentyp hinterlegt sind. Erst
wenn das Programm läuft, wird anhand dieser Tabelle entschieden, welcher Codeblock genau
ausgeführt werden muss. Dies ermöglicht die Abstraktion von konkreten Datentypen auf der
Ebene der Speicherverwaltung.

4. Die Theoretische Ebene (Typ-Theorie)

In der theoretischen Informatik beschreibt Polymorphismus die Fähigkeit eines Typsystems,
einen Wert oder eine Funktion unter mehreren Typen zu führen. Man unterscheidet dabei vor
allem zwischen Ad-hoc-Polymorphismus (Überladen von Funktionen), Subtyp-Polymorphismus
(Vererbung) und parametrischer Polymorphie (Generics). Ziel ist es, abstrakte Algorithmen zu
definieren, die über eine Menge von Typen operieren können, während die Typsicherheit
mathematisch beweisbar bleibt.

Beispiel «Normalform bei Datenbanken»

1. Die Alltags-Ebene (Abstrakt)

Normalformen sind wie ein striktes Ordnungssystem für einen Aktenschrank, das verhindert, dass
dieselbe Information an fünf verschiedenen Stellen abgelegt wird. Jedes Detail bekommt genau
einen festen Platz, damit man beim Ändern einer Adresse nicht in zehn verschiedenen Mappen
radieren muss. Durch diese Regeln werden doppelte Einträge vermieden, was das Suchen und

Aktualisieren massiv vereinfacht. Das Ziel ist ein „sauberes“ System, in dem keine
widersprüchlichen Informationen entstehen können.

2. Die Programmier-Ebene (Anwendung)

Für Entwickler ist die Normalisierung der Prozess, eine große, unübersichtliche Tabelle in mehrere
kleinere, logisch verknüpfte Tabellen aufzuteilen. Man trennt beispielsweise Kundendaten von
Bestelldaten, um sicherzustellen, dass jede Information nur einmal existiert und über eindeutige
Schlüssel (IDs) referenziert wird. Dies verhindert Anomalien, sodass beim Löschen einer
Bestellung nicht versehentlich der ganze Kunde aus dem System verschwindet. Die ersten drei
Normalformen (1NF, 2NF, 3NF) gelten dabei als Goldstandard für ein robustes Datenbankdesign.

3. Die System-Ebene (Implementierung)

Auf technischer Ebene sichern Normalformen die Datenintegrität und minimieren den
Speicherbedarf durch die Vermeidung von Redundanz. Da jede Information nur einmal physisch
vorhanden ist, muss das System bei Schreibvorgängen weniger Daten synchronisieren, was die
Gefahr von Inkonsistenzen verringert. Allerdings erfordert ein hochgradig normalisiertes System
mehr „Joins“ (Zusammenführungen) beim Lesen der Daten, was die Abfragegeschwindigkeit
beeinflussen kann. Es geht hier also um die Balance zwischen Datensicherheit und Performance.

4. Die Theoretische Ebene (Formal)

In der relationalen Entwurfstheorie definieren Normalformen Kriterien für die Zerlegung von
Relationen basierend auf funktionalen Abhängigkeiten. Ein Schema erreicht eine höhere
Normalform, wenn jedes Nicht-Schlüssel-Attribut ausschließlich von einem Primärschlüssel
abhängt (getreu dem Motto: „The key, the whole key, and nothing but the key“). Mathematisch wird
so sichergestellt, dass die Dekomposition verlustfrei ist und keine transitiven Abhängigkeiten die
logische Struktur schwächen. Es ist ein formaler Beweis für die Korrektheit und Redundanzfreiheit
eines Datenmodells.

