Hartmann W., Jackel S., Naf M., Reichert R.: Informatikunterricht planen und durchfiihren.
2026, Springer Vieweg Berlin, Heidelberg

Advance Organizer mit generativer Kl entwickeln

Wenn es schwierig ist, flr ein abstraktes Thema einen passenden Advance Organizer zu finden,
kann ein generativer KI-Werkzeug gezielt unterstutzen. Dazu gibt man das zentrale Konzept oder
den Fachbegriff ein (z. B. Nebenlaufigkeit, Polymorphismus, Normalform Datenbank) und bittet
um mehrere kurze Erklarungen auf unterschiedlichen Abstraktionsstufen (z. B. alltagsnah,
bildhaft, fachlich reduziert. Aus diesen Vorschlagen wahlt die Lehrperson eine geeignete
Analogie oder Formulierung aus, passt sie an die Lernenden an und nutzt sie als Einstieg, um
neues Wissen mit bereits Bekanntem zu verkntpfen.

Die folgenden Beispiele wurden im Januar 2026 mit Google Gemini erstellt und werden in
Originalform wiedergegeben.

Beispiel «<Nebenlaufigkeit»
1. Die Alltags-Ebene (Abstrakt)

Nebenlaufigkeit ist wie ein Koch, der gleichzeitig Nudeln kocht und Sauce rihrt, indem er
standig zwischen den Aufgaben hin- und herwechselt. Auch wenn er nur zwei Hande hat,
werden beide Gerichte fast zeitgleich fertig, weil er Wartezeiten effizient nutzt. In der Informatik
bedeutet das, dass ein System mehrere Aufgaben beginnt und bearbeitet, ohne dass eine erst
komplett abgeschlossen sein muss. Es geht priméar um die Organisation von Aufgaben, nicht
zwingend um deren zeitgleiche Ausfihrung.

2. Die Programmier-Ebene (Anwendung)

Fur Entwickler bedeutet Nebenlaufigkeit, ein Programm in logisch unabhangige Einheiten wie
Threads oder Coroutines zu unterteilen. Diese Einheiten kdnnen verschachtelt ausgefthrt
werden, was die Reaktionsfahigkeit erhoht, etwa damit eine Benutzeroberflache nicht einfriert,
wahrend im Hintergrund Daten geladen werden. Ein Scheduler steuert dabei, welcher Code-
Abschnitt wann Rechenzeit erhalt. Der Fokus liegt hier auf der sauberen Trennung von Ablaufen,
die theoretisch auch gleichzeitig ablaufen konnten.

3. Die System-Ebene (Hardware & OS)

Auf der Ebene des Betriebssystems beschreibt Nebenlaufigkeit die Verwaltung mehrerer
Prozesse, die sich begrenzte Ressourcen wie die CPU teilen. Durch extrem schnelles Hin- und
Herwechseln (Context Switching) erzeugt das System die Illusion von Gleichzeitigkeit, selbst
wenn nur ein einzelner Prozessorkern vorhanden ist. Dabei mussen
Synchronisationsmechanismen wie Locks oder Mutexe verhindern, dass Prozesse gleichzeitig
auf denselben Speicher zugreifen und Daten korrumpieren. Hier wird die physikalische
Rechenzeit in winzige Zeitscheiben zerlegt.

4. Die Theoretische Ebene (Formal)

In der theoretischen Informatik wird Nebenlaufigkeit als die Eigenschaft eines Systems definiert,
bei der die zeitliche Reihenfolge von Ereignissen nur partiell geordnet ist. Mathematische
Modelle wie Petri-Netze oder Prozesskalkulle untersuchen dabei das Verhalten von Systemen,



deren Zustandsubergange nicht-deterministisch verschachtelt sein kdnnen. Es geht darum, zu
beweisen, dass ein System trotz beliebiger Abfolgen von Rechenschritten (Interleaving) stets
korrekte Ergebnisse liefert und keine Deadlocks erzeugt. Der Fokus liegt auf der Verifikation der
logischen Korrektheit komplexer Interaktionen.

Beispiel «Polymorphismus»
1. Die Alltags-Ebene (Abstrakt)

Polymorphismus bedeutet, dass ein und derselbe Befehl je nach Empfanger unterschiedliche
Reaktionen auslost. Denken Sie an das Kommando ,,Sprechen!“: Ein Mensch antwortet mit
Worten, ein Hund bellt und ein Papagei krachzt. In der Informatik erméglicht dies, dass man
verschiedene Dinge auf die gleiche Art ansprechen kann, ohne die genauen Details jedes
Einzelnen zu kennen. Es geht um eine einheitliche Schnittstelle fur unterschiedliche
Verhaltensweisen.

2. Die Programmier-Ebene (Anwendung)

In der objektorientierten Programmierung erlaubt Polymorphismus, dass eine Unterklasse die
Methoden ihrer Basisklasse uberschreibt. Ein Programm kann zum Beispiel eine Liste von
»Formen“ verwalten und fur jede einfach zeichne() aufrufen — egal ob es sich um einen Kreis oder
ein Quadrat handelt. Der Code muss nicht wissen, welche Form er vor sich hat, da jedes Objekt
selbst weiB, wie es sich zeichnen muss. Das macht Software flexibel und leicht erweiterbar fur
neue Objekttypen.

3. Die System-Ebene (Implementierung)

Technisch wird Polymorphismus oft durch ,dynamische Bindung® (Late Binding) zur Laufzeit
realisiert. Der Compiler erstellt dabei haufig eine Sprungtabelle (V-Table), in der die
Speicheradressen der tatsachlichen Methoden fur den jeweiligen Datentyp hinterlegt sind. Erst
wenn das Programm lauft, wird anhand dieser Tabelle entschieden, welcher Codeblock genau
ausgefuhrt werden muss. Dies ermdglicht die Abstraktion von konkreten Datentypen auf der
Ebene der Speicherverwaltung.

4. Die Theoretische Ebene (Typ-Theorie)

In der theoretischen Informatik beschreibt Polymorphismus die Fahigkeit eines Typsystems,
einen Wert oder eine Funktion unter mehreren Typen zu fuhren. Man unterscheidet dabei vor
allem zwischen Ad-hoc-Polymorphismus (Uberladen von Funktionen), Subtyp-Polymorphismus
(Vererbung) und parametrischer Polymorphie (Generics). Ziel ist es, abstrakte Algorithmen zu
definieren, die Uber eine Menge von Typen operieren konnen, wahrend die Typsicherheit
mathematisch beweisbar bleibt.

Beispiel «<Normalform bei Datenbanken»
1. Die Alltags-Ebene (Abstrakt)

Normalformen sind wie ein striktes Ordnungssystem fur einen Aktenschrank, das verhindert, dass
dieselbe Information an funf verschiedenen Stellen abgelegt wird. Jedes Detail bekommt genau
einen festen Platz, damit man beim Andern einer Adresse nicht in zehn verschiedenen Mappen
radieren muss. Durch diese Regeln werden doppelte Eintrage vermieden, was das Suchen und



Aktualisieren massiv vereinfacht. Das Ziel ist ein ,sauberes“ System, in dem keine
widerspruchlichen Informationen entstehen konnen.

2. Die Programmier-Ebene (Anwendung)

Far Entwickler ist die Normalisierung der Prozess, eine groBe, unubersichtliche Tabelle in mehrere
kleinere, logisch verknupfte Tabellen aufzuteilen. Man trennt beispielsweise Kundendaten von
Bestelldaten, um sicherzustellen, dass jede Information nur einmal existiert und Gber eindeutige
Schlissel (IDs) referenziert wird. Dies verhindert Anomalien, sodass beim Loschen einer
Bestellung nicht versehentlich der ganze Kunde aus dem System verschwindet. Die ersten drei
Normalformen (1NF, 2NF, 3NF) gelten dabei als Goldstandard fur ein robustes Datenbankdesign.

3. Die System-Ebene (Implementierung)

Auf technischer Ebene sichern Normalformen die Datenintegritdt und minimieren den
Speicherbedarf durch die Vermeidung von Redundanz. Da jede Information nur einmal physisch
vorhanden ist, muss das System bei Schreibvorgdngen weniger Daten synchronisieren, was die
Gefahr von Inkonsistenzen verringert. Allerdings erfordert ein hochgradig normalisiertes System
mehr ,Joins* (Zusammenfuhrungen) beim Lesen der Daten, was die Abfragegeschwindigkeit
beeinflussen kann. Es geht hier also um die Balance zwischen Datensicherheit und Performance.

4. Die Theoretische Ebene (Formal)

In der relationalen Entwurfstheorie definieren Normalformen Kriterien flr die Zerlegung von
Relationen basierend auf funktionalen Abhangigkeiten. Ein Schema erreicht eine hodhere
Normalform, wenn jedes Nicht-Schlussel-Attribut ausschlieBlich von einem Primarschlissel
abhangt (getreu dem Motto: ,,The key, the whole key, and nothing but the key“). Mathematisch wird
so sichergestellt, dass die Dekomposition verlustfrei ist und keine transitiven Abhangigkeiten die
logische Struktur schwachen. Es ist ein formaler Beweis flir die Korrektheit und Redundanzfreiheit
eines Datenmodells.



